| QUATERNION, subst. masc. MATH. Nombre hypercomplexe constitué par quatre nombres réels pris dans un ordre déterminé et combinés suivant certaines lois. Théorie des quaternions. En 1878, Frobenius prouve que les quaternions constituent le seul exemple de corps non commutatif (de dimension finie) sur le corps des nombres réels (Bourbaki, Hist. math., 1960, p. 122).En identifiant x + yi au nombre complexe x + iy, tout quaternion s'écrit α
+ jβ
avec α
et β complexes (Bouvier-GeorgeMath.1979).V. hypercomplexe s.v. hyper- ex. de Gds cour. pensée math.Prononc.: [kwatε
ʀnjɔ
̃]. V. quadri-. Étymol. et Hist. 1. 1537 « ensemble de quatre » (Fr. Sagon, Le Coup dessay [...] contenant la responce a deux epistres de Clement Marot, f o21); 2. 1860 math. (M. G. Bellavitis ds C.r. de l'Ac. des Sc., t. 50, p. 1162). Empr. au lat. tardifquaternio, -onis « le nombre quatre; section de quatre soldats; cahier de quatre feuillets », dér. de quaterni « quatre chaque fois »; cf. avec 2 l'angl. quaternion att. ds ce sens dep. 1843 (W. R. Hamilton ds NED). |